A Particle Swarm Optimization Based on Multi Objective Functions with Uniform Design
نویسندگان
چکیده
A Multi-objective problems occurs wherever optimal solution necessary to be taken in the presence of tradeoffs between more than one conflicting objectives. Usually the population’s values of MOPSO algorithm are random which leads to random search quality. Particle Swarm Optimization Based on Multi Objective Functions with Uniform Design (MOPSO-UD), is proposed to enhance the accuracy of the particles convergence and keep the versatility of the Pareto optimal solutions and used the Uniform design to resolve the randomize search problem of the original MOPSO algorithm also the execution time of MOPSO-UD is faster compared with multi-objective particle swarm optimization algorithm (MOPSO). Keywords—Particle swarm optimization algorithm, Multi-objective optimization, MOPSO algorithm, Uniform Design,MOPSO-UD.
منابع مشابه
Modeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)
In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...
متن کاملPareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope
Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...
متن کاملEMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملPareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm
One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...
متن کاملMulti-Objective Design Optimization of a Linear Brushless Permanent Magnet Motor Using Particle Swarm Optimization (PSO)
In this paper a brushless permanent magnet motor is designed considering minimum thrust ripple and maximum thrust density (the ratio of the thrust to permanent magnet volumes). Particle Swarm Optimization (PSO) is used as optimization method. Finite element analysis (FEA) is carried out base on the optimized and conventional geometric dimensions of the motor. The results of the FEA deal to ...
متن کامل